# Decimal to Binary converter

10
2
2
16

Little endian

Big endian

Decimal to binary calculation steps

Divide by the base 2 to get the digits from the remainders:

Division
by 2
Quotient

Remainder

(Digit)
Bit #

* You can enter decimals with e notation. e.g: 572 = 5.72e2.

Binary to Decimal conversion ►

## Decimal

Decimal number is a number expressed in the base 10 numeral system. Decimal number's digits have 10 symbols: 0,1,2,3,4,5,6,7,8,9. Each digit of a decimal number counts a power of 10.

Decimal number example:
65310 = 6×102+5×101+3×100

## Binary

Binary number is a number expressed in the base 2 numeral system. Binary number's digits have 2 symbols: zero (0) and one (1). Each digit of a binary number counts a power of 2.

Binary number example:
11012 = 1×23+1×22+0×21+1×20 = 1310

## How to convert decimal to binary

#### Conversion steps:

1. Divide the number by 2.
2. Get the integer quotient for the next iteration.
3. Get the remainder for the binary digit.
4. Repeat the steps until the quotient is equal to 0.

#### Example #1

Convert 1310 to binary:

Division
by 2
Quotient Remainder Bit #
13/2 6 1 0
6/2 3 0 1
3/2 1 1 2
1/2 0 1 3

So 1310 = 11012

#### Example #2

Convert 17410 to binary:

Division
by 2
Quotient Remainder Bit #
174/2 87 0 0
87/2 43 1 1
43/2 21 1 2
21/2 10 1 3
10/2 5 0 4
5/2 2 1 5
2/2 1 0 6
1/2 0 1 7

So 17410 = 101011102

## Decimal to binary conversion table

Decimal
Number
Binary
Number
Hex
Number
0 0 0
1 1 1
2 10 2
3 11 3
4 100 4
5 101 5
6 110 6
7 111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F
16 10000 10
17 10001 11
18 10010 12
19 10011 13
20 10100 14
21 10101 15
22 10110 16
23 10111 17
24 11000 18
25 11001 19
26 11010 1A
27 11011 1B
28 11100 1C
29 11101 1D
30 11110 1E
31 11111 1F
32 100000 20
64 1000000 40
128 10000000 80
256 100000000 100